Home
Search all pages
Subjects
By activity
Professions, Sciences, Humanities, Business, ...
User Interface
Text-based, GUI, Audio, Video, Keyboards, Mouse, Images,...
Text Strings
Conversions, tests, processing, manipulation,...
Math
Integer, Floating point, Matrix, Statistics, Boolean, ...
Processing
Algorithms, Memory, Process control, Debugging, ...
Stored Data
Data storage, Integrity, Encryption, Compression, ...
Communications
Networks, protocols, Interprocess, Remote, Client Server, ...
Hard World Timing, Calendar and Clock, Audio, Video, Printer, Controls...
File System
Management, Filtering, File & Directory access, Viewers, ...
|
|
|
RocketLink!--> Man page versions:
OpenBSD
RMD160(3) OpenBSD Programmer's Manual RMD160(3)
NAME
RMD160Init, RMD160Update, RMD160Final, RMD160Transform, RMD160End,
RMD160File, RMD160Data - calculate the ``RIPEMD-160'' message digest
SYNOPSIS
#include <sys/types.h>
#include <rmd160.h>
void
RMD160Init(RMD160_CTX *context);
void
RMD160Update(RMD160_CTX *context, const u_char *data, u_int nbytes);
void
RMD160Final(u_char digest[20], RMD160_CTX *context);
void
RMD160Transform(u_int32_t state[5], const u_int32_t block[16]);
char *
RMD160End(RMD160_CTX *context, char *buf);
char *
RMD160File(char *filename, char *buf);
char *
RMD160Data(u_char *data, u_int len, char *buf);
DESCRIPTION
The RMD160 functions implement the 160-bit RIPE message digest hash algo-
rithm (RMD-160). RMD-160 is used to generate a condensed representation
of a message called a message digest. The algorithm takes a message less
than 2^64 bits as input and produces a 160-bit digest suitable for use as
a digital signature.
The RMD160 functions are considered to be more secure than the md4(3) and
md5(3) functions and at least as secure as the sha1(3) function. All
share a similar interface.
The RMD160Init() function initializes a RMD160_CTX context for use with
RMD160Update(), and RMD160Final(). The RMD160Update() function adds data
of length nbytes to the RMD160_CTX specified by context. RMD160Final() is
called when all data has been added via RMD160Update() and stores a mes-
sage digest in the digest parameter. When a null pointer is passed to
RMD160Final() as first argument only the final padding will be applied
and the current context can still be used with RMD160Update().
The RMD160Transform() function is used by RMD160Update() to hash 512-bit
blocks and forms the core of the algorithm. Most programs should use the
interface provided by RMD160Init(), RMD160Update() and RMD160Final() in-
stead of calling RMD160Transform() directly.
The RMD160End() function is a front end for RMD160Final() which converts
the digest into an ASCII representation of the 160 bit digest in hexadec-
imal.
The RMD160File() function calculates the digest for a file and returns
the result via RMD160End(). If RMD160File() is unable to open the file a
NULL pointer is returned.
The RMD160Data() function calculates the digest of an arbitrary string
and returns the result via RMD160End().
For each of the RMD160End(), RMD160File(), and RMD160Data() functions the
buf parameter should either be a string of at least 41 characters in size
or a NULL pointer. In the latter case, space will be dynamically allo-
cated via malloc(3) and should be freed using free(3) when it is no
longer needed.
EXAMPLES
The follow code fragment will calculate the digest for the string "abc"
which is ``0x8eb208f7e05d987a9b044a8e98c6b087f15a0bfc''.
RMD160_CTX rmd;
u_char results[20];
char *buf;
int n;
buf = "abc";
n = strlen(buf);
RMD160Init(&rmd);
RMD160Update(&rmd, (u_char *)buf, n);
RMD160Final(results, &rmd);
/* Print the digest as one long hex value */
printf("0x");
for (n = 0; n < 20; n++)
printf("%02x", results[n]);
putchar('\n');
Alternately, the helper functions could be used in the following way:
RMD160_CTX rmd;
u_char output[41];
char *buf = "abc";
printf("0x%s\n", RMD160Data(buf, strlen(buf), output));
CAVEATS
If a message digest is to be copied to a multi-byte type (ie: an array of
five 32-bit integers) it will be necessary to perform byte swapping on
little endian machines such as the i386, alpha, and vax.
AUTHOR
This implementation of RMD-160 was written by Antoon Bosselaers.
The RMD160End(), RMD160File(), and RMD160Data() helper functions are de-
rived from code written by Poul-Henning Kamp.
SEE ALSO
rmd160(1), md4(3), md5(3), sha1(3)
H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160, a strengthened
version of RIPEMD.
Information technology - Security techniques - Hash-functions - Part
Information0 0Information1 1Information2, ISO/IEC 10118-3.
H. Dobbertin, A. Bosselaers, B. Preneel, "The RIPEMD-160 cryptographic
hash function", Dr. Dobb's Journal, Vol. 22, No. 1, pp. 24-28, January
1997.
HISTORY
The RMD-160 functions appeared in OpenBSD 2.1.
OpenBSD 2.6 July 16, 1997 2
Source: OpenBSD 2.6 man pages. Copyright: Portions are copyrighted by BERKELEY SOFTWARE DESIGN, INC., The Regents of the University of California, Massachusetts Institute of Technology, Free Software Foundation, FreeBSD Inc., and others. |
(Corrections, notes, and links courtesy of RocketAware.com)
OpenBSD sources for rmd160(3)
Up to: Data integrity and Security, Checksums and Digests - cryptography, message digests, etc.
RocketLink!--> Man page versions:
OpenBSD
Rapid-Links:
Search | About | Comments | Submit Path: RocketAware > man pages >
rmd160.3/
RocketAware.com is a service of Mib Software Copyright 1999, Forrest J. Cavalier III. All Rights Reserved. We welcome submissions and comments
|