perlembed - how to embed perl in your C program
perlembed - how to embed perl in your
C program
Do you want to:
- Use C from Perl?
-
Read the perlcall manpage and the perlxs manpage.
- Use a Unix program from Perl?
-
Read about back-quotes and about system and exec in the perlfunc manpage.
- Use Perl from Perl?
-
Read about do and eval and require
and use.
- Use C from C?
-
Rethink your design.
- Use Perl from C?
-
Read on...
Compiling your C program
There's one example in each of the nine sections:
Adding a Perl interpreter to your C program
Calling a Perl subroutine from your C program
Evaluating a Perl statement from your C program
Performing Perl pattern matches and substitutions from your C program
Fiddling with the Perl stack from your C program
Maintaining a persistent interpreter
Maintaining multiple interpreter instances
Using Perl modules, which themselves use C libraries, from your C program
Embedding Perl under Win32
If you have trouble compiling the scripts in this documentation, you're not alone. The cardinal rule:
COMPILE
THE
PROGRAMS
IN
EXACTLY
THE
SAME
WAY
THAT
YOUR
PERL
WAS
COMPILED. (Sorry for yelling.)
Also, every
C program that uses Perl must link in the perl library. What's that, you ask? Perl is itself written in
C; the perl library is the collection of compiled
C programs that were used to create your perl executable (
/usr/bin/perl or equivalent). (Corollary: you can't use Perl from your
C program unless Perl has been compiled on your
machine, or installed properly--that's why you shouldn't blithely copy Perl
executables from machine to machine without also copying the
lib directory.)
When you use Perl from
C, your
C program will--usually--allocate, ``run'', and deallocate a
PerlInterpreter object, which is defined by the perl library.
If your copy of Perl is recent enough to contain this documentation
(version 5.002 or later), then the perl library (and EXTERN.h and
perl.h, which you'll also need) will reside in a directory that looks like this:
/usr/local/lib/perl5/your_architecture_here/CORE
or perhaps just
/usr/local/lib/perl5/CORE
or maybe something like
/usr/opt/perl5/CORE
Execute this statement for a hint about where to find
CORE:
perl -MConfig -e 'print $Config{archlib}'
Here's how you'd compile the example in the next section,
Adding a Perl interpreter to your C program, on my Linux box:
% gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include
-I/usr/local/lib/perl5/i586-linux/5.003/CORE
-L/usr/local/lib/perl5/i586-linux/5.003/CORE
-o interp interp.c -lperl -lm
(That's all one line.) On my
DEC Alpha running 5.003_05, the incantation is a bit
different:
% cc -O2 -Olimit 2900 -DSTANDARD_C -I/usr/local/include
-I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE
-L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib
-D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm
How can you figure out what to add? Assuming your Perl is post-5.001,
execute a perl -V command and pay special attention to the ``cc'' and ``ccflags''
information.
You'll have to choose the appropriate compiler (cc, gcc, et al.) for your machine: perl -MConfig -e 'print $Config{cc}' will tell you what to use.
You'll also have to choose the appropriate library directory (/usr/local/lib/...) for your machine. If your compiler complains that certain functions are
undefined, or that it can't locate
-lperl, then you need to change the path following the -L. If it complains that it can't find EXTERN.h and perl.h, you need to change the path following the -I .
You may have to add extra libraries as well. Which ones? Perhaps those
printed by
perl -MConfig -e 'print $Config{libs}'
Provided your perl binary was properly configured and installed the
ExtUtils::Embed module will determine all of this information for you:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
If the ExtUtils::Embed module isn't part of your Perl distribution, you can retrieve it from http://www.perl.com/perl/CPAN/modules/by-module/ExtUtils::Embed.
(If this documentation came from your Perl distribution, then you're
running 5.004 or better and you already have it.)
The ExtUtils::Embed kit on
CPAN also contains all source code for the examples in
this document, tests, additional examples and other information you may
find useful.
In a sense, perl (the
C program) is a good example of embedding Perl (the
language), so I'll demonstrate embedding with miniperlmain.c, from the source distribution. Here's a bastardized, nonportable version
of miniperlmain.c containing the essentials of embedding:
#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> /* from the Perl distribution */
static PerlInterpreter *my_perl; /*** The Perl interpreter ***/
int main(int argc, char **argv, char **env)
{
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);
}
Notice that we don't use the env pointer. Normally handed to
perl_parse as its final argument, env here is replaced by
NULL, which means that the current environment will be used.
Now compile this program (I'll call it interp.c) into an executable:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
After a successful compilation, you'll be able to use interp just like perl itself:
% interp
print "Pretty Good Perl \n";
print "10890 - 9801 is ", 10890 - 9801;
<CTRL-D>
Pretty Good Perl
10890 - 9801 is 1089
or
% interp -e 'printf("%x", 3735928559)'
deadbeef
You can also read and execute Perl statements from a file while in the midst of your
C program, by placing the filename in
argv[1] before calling perl_run().
To call individual Perl subroutines, you can use any of the perl_call_*
functions documented in the the perlcall manpage manpage. In this example we'll use perl_call_argv.
That's shown below, in a program I'll call showtime.c.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
int main(int argc, char **argv, char **env)
{
char *args[] = { NULL };
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, argc, argv, NULL);
/*** skipping perl_run() ***/
perl_call_argv("showtime", G_DISCARD | G_NOARGS, args);
perl_destruct(my_perl);
perl_free(my_perl);
}
where showtime is a Perl subroutine that takes no arguments (that's the
G_NOARGS) and for which I'll ignore the return value (that's the
G_DISCARD). Those flags, and others, are discussed in the perlcall manpage.
I'll define the showtime subroutine in a file called showtime.pl:
print "I shan't be printed.";
sub showtime {
print time;
}
Simple enough. Now compile and run:
% cc -o showtime showtime.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% showtime showtime.pl
818284590
yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the Unix epoch), and the moment
I began writing this sentence.
In this particular case we don't have to call perl_run, but in general it's considered good practice to ensure proper
initialization of library code, including execution of all object DESTROY methods and package END {} blocks.
If you want to pass arguments to the Perl subroutine, you can add strings
to the NULL-terminated args list passed to
perl_call_argv. For other data types, or to examine return values, you'll need to
manipulate the Perl stack. That's demonstrated in the last section of this
document: Fiddling with the Perl stack from your C program.
Perl provides two
API functions to evaluate pieces of Perl code. These
are perl_eval_sv() and perl_eval_pv().
Arguably, these are the only routines you'll ever need to execute snippets of Perl code from within your
C program. Your code can be as long as you wish; it can contain multiple statements; it can employ
use, require and do to include external Perl files.
perl_eval_pv() lets us evaluate individual Perl strings, and then extract variables for coercion into
C types. The following program,
string.c, executes three Perl strings, extracting an int from the first, a float from the second, and a char * from the third.
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
main (int argc, char **argv, char **env)
{
char *embedding[] = { "", "-e", "0" };
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 3, embedding, NULL);
perl_run(my_perl);
/** Treat $a as an integer **/
perl_eval_pv("$a = 3; $a **= 2", TRUE);
printf("a = %d\n", SvIV(perl_get_sv("a", FALSE)));
/** Treat $a as a float **/
perl_eval_pv("$a = 3.14; $a **= 2", TRUE);
printf("a = %f\n", SvNV(perl_get_sv("a", FALSE)));
/** Treat $a as a string **/
perl_eval_pv("$a = 'rekcaH lreP rehtonA tsuJ'; $a = reverse($a);", TRUE);
printf("a = %s\n", SvPV(perl_get_sv("a", FALSE), na));
perl_destruct(my_perl);
perl_free(my_perl);
}
All of those strange functions with sv in their names help convert Perl scalars to
C types. They're described in the perlguts manpage.
If you compile and run string.c, you'll see the results of using
SvIV() to create an int, SvNV() to create a float , and
SvPV() to create a string:
a = 9
a = 9.859600
a = Just Another Perl Hacker
In the example above, we've created a global variable to temporarily store
the computed value of our eval'd expression. It is also possible and in
most cases a better strategy to fetch the return value from perl_eval_pv instead. Example:
...
SV *val = perl_eval_pv("reverse 'rekcaH lreP rehtonA tsuJ'", TRUE);
printf("%s\n", SvPV(val,na));
...
This way, we avoid namespace pollution by not creating global variables and
we've simplified our code as well.
The perl_eval_sv() function lets us evaluate chunks of Perl code, so we can define some
functions that use it to ``specialize'' in matches and substitutions: match(), substitute(), and matches().
char match(SV *string, char *pattern);
Given a string and a pattern (e.g., m/clasp/ or /\b\w*\b/ , which in your
C program might appear as ``/\\b\\w*\\b/''),
match() returns 1 if the string matches the pattern and 0
otherwise.
int substitute(SV **string, char *pattern);
Given a pointer to an SV and an =~ operation (e.g.,
s/bob/robert/g or tr[A-Z][a-z] ), substitute() modifies the string within the AV at according to the operation, returning the number of substitutions made.
int matches(SV *string, char *pattern, AV **matches);
Given an SV, a pattern, and a pointer to an empty AV, matches() evaluates $string =~ $pattern in an array context, and fills in matches with the array elements, returning the number of matches found.
Here's a sample program, match.c, that uses all three (long lines have been wrapped here):
#include <EXTERN.h>
#include <perl.h>
/** my_perl_eval_sv(code, error_check)
** kinda like perl_eval_sv(),
** but we pop the return value off the stack
**/
SV* my_perl_eval_sv(SV *sv, I32 croak_on_error)
{
dSP;
SV* retval;
PUSHMARK(sp);
perl_eval_sv(sv, G_SCALAR);
SPAGAIN;
retval = POPs;
PUTBACK;
if (croak_on_error && SvTRUE(GvSV(errgv)))
croak(SvPVx(GvSV(errgv), na));
return retval;
}
/** match(string, pattern)
**
** Used for matches in a scalar context.
**
** Returns 1 if the match was successful; 0 otherwise.
**/
I32 match(SV *string, char *pattern)
{
SV *command = newSV(0), *retval;
sv_setpvf(command, "my $string = '%s'; $string =~ %s",
SvPV(string,na), pattern);
retval = my_perl_eval_sv(command, TRUE);
SvREFCNT_dec(command);
return SvIV(retval);
}
/** substitute(string, pattern)
**
** Used for =~ operations that modify their left-hand side (s/// and tr///)
**
** Returns the number of successful matches, and
** modifies the input string if there were any.
**/
I32 substitute(SV **string, char *pattern)
{
SV *command = newSV(0), *retval;
sv_setpvf(command, "$string = '%s'; ($string =~ %s)",
SvPV(*string,na), pattern);
retval = my_perl_eval_sv(command, TRUE);
SvREFCNT_dec(command);
*string = perl_get_sv("string", FALSE);
return SvIV(retval);
}
/** matches(string, pattern, matches)
**
** Used for matches in an array context.
**
** Returns the number of matches,
** and fills in **matches with the matching substrings
**/
I32 matches(SV *string, char *pattern, AV **match_list)
{
SV *command = newSV(0);
I32 num_matches;
sv_setpvf(command, "my $string = '%s'; @array = ($string =~ %s)",
SvPV(string,na), pattern);
my_perl_eval_sv(command, TRUE);
SvREFCNT_dec(command);
*match_list = perl_get_av("array", FALSE);
num_matches = av_len(*match_list) + 1; /** assume $[ is 0 **/
return num_matches;
}
main (int argc, char **argv, char **env)
{
PerlInterpreter *my_perl = perl_alloc();
char *embedding[] = { "", "-e", "0" };
AV *match_list;
I32 num_matches, i;
SV *text = newSV(0);
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, embedding, NULL);
sv_setpv(text, "When he is at a convenience store and the bill comes to some amount like 76 cents, Maynard is aware that there is something he *should* do, something that will enable him to get back a quarter, but he has no idea *what*. He fumbles through his red squeezey changepurse and gives the boy three extra pennies with his dollar, hoping that he might luck into the correct amount. The boy gives him back two of his own pennies and then the big shiny quarter that is his prize. -RICHH");
if (match(text, "m/quarter/")) /** Does text contain 'quarter'? **/
printf("match: Text contains the word 'quarter'.\n\n");
else
printf("match: Text doesn't contain the word 'quarter'.\n\n");
if (match(text, "m/eighth/")) /** Does text contain 'eighth'? **/
printf("match: Text contains the word 'eighth'.\n\n");
else
printf("match: Text doesn't contain the word 'eighth'.\n\n");
/** Match all occurrences of /wi../ **/
num_matches = matches(text, "m/(wi..)/g", &match_list);
printf("matches: m/(wi..)/g found %d matches...\n", num_matches);
for (i = 0; i < num_matches; i++)
printf("match: %s\n", SvPV(*av_fetch(match_list, i, FALSE),na));
printf("\n");
/** Remove all vowels from text **/
num_matches = substitute(&text, "s/[aeiou]//gi");
if (num_matches) {
printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
num_matches);
printf("Now text is: %s\n\n", SvPV(text,na));
}
/** Attempt a substitution **/
if (!substitute(&text, "s/Perl/C/")) {
printf("substitute: s/Perl/C...No substitution made.\n\n");
}
SvREFCNT_dec(text);
perl_destruct_level = 1;
perl_destruct(my_perl);
perl_free(my_perl);
}
which produces the output (again, long lines have been wrapped here)
match: Text contains the word 'quarter'.
match: Text doesn't contain the word 'eighth'.
matches: m/(wi..)/g found 2 matches...
match: will
match: with
substitute: s/[aeiou]//gi...139 substitutions made.
Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck
qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by gvs
hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. -RCHH
substitute: s/Perl/C...No substitution made.
When trying to explain stacks, most computer science textbooks mumble something about spring-loaded columns of cafeteria plates: the last thing you pushed on the stack is the first thing you pop off. That'll do for our purposes: your
C program will push some arguments onto ``the Perl stack'', shut its eyes while some magic happens, and then pop the results--the return value of your Perl subroutine--off the stack.
First you'll need to know how to convert between
C types and Perl types, with newSViv()
and sv_setnv() and newAV() and all their friends.
They're described in the perlguts manpage.
Then you'll need to know how to manipulate the Perl stack. That's described
in the perlcall manpage.
Once you've understood those, embedding Perl in
C is easy.
Because
C has no builtin function for integer exponentiation,
let's make Perl's ** operator available to it (this is less useful than it
sounds, because Perl implements ** with C's pow() function). First I'll create a stub exponentiation function in power.pl:
sub expo {
my ($a, $b) = @_;
return $a ** $b;
}
Now I'll create a
C program, power.c, with a function
PerlPower() that contains all the perlguts necessary to push the two arguments into expo() and to pop the return value out. Take a deep breath...
#include <EXTERN.h>
#include <perl.h>
static PerlInterpreter *my_perl;
static void
PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(sp); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
perl_call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */
/* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args.*/
}
int main (int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };
my_perl = perl_alloc();
perl_construct( my_perl );
perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
perl_run(my_perl);
PerlPower(3, 4); /*** Compute 3 ** 4 ***/
perl_destruct(my_perl);
perl_free(my_perl);
}
Compile and run:
% cc -o power power.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% power
3 to the 4th power is 81.
When developing interactive and/or potentially long-running applications,
it's a good idea to maintain a persistent interpreter rather than
allocating and constructing a new interpreter multiple times. The major
reason is speed: since Perl will only be loaded into memory once.
However, you have to be more cautious with namespace and variable scoping
when using a persistent interpreter. In previous examples we've been using
global variables in the default package main . We knew exactly what code would be run, and assumed we could avoid
variable collisions and outrageous symbol table growth.
Let's say your application is a server that will occasionally run Perl code
from some arbitrary file. Your server has no way of knowing what code it's
going to run. Very dangerous.
If the file is pulled in by perl_parse(), compiled into a newly constructed interpreter, and subsequently cleaned
out with
perl_destruct() afterwards, you're shielded from most namespace troubles.
One way to avoid namespace collisions in this scenario is to translate the
filename into a guaranteed-unique package name, and then compile the code
into that package using eval. In the example below, each file will only be compiled once. Or, the
application might choose to clean out the symbol table associated with the
file after it's no longer needed. Using perl_call_argv, We'll call the subroutine Embed::Persistent::eval_file which lives in the file persistent.pl and pass the filename and boolean cleanup/cache flag as arguments.
Note that the process will continue to grow for each file that it uses. In
addition, there might be AUTOLOAD ed subroutines and other conditions that cause Perl's symbol table to grow.
You might want to add some logic that keeps track of the process size, or
restarts itself after a certain number of requests, to ensure that memory
consumption is minimized. You'll also want to scope your variables with my whenever possible.
package Embed::Persistent;
#persistent.pl
use strict;
use vars '%Cache';
sub valid_package_name {
my($string) = @_;
$string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;
# second pass only for words starting with a digit
$string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;
# Dress it up as a real package name
$string =~ s|/|::|g;
return "Embed" . $string;
}
#borrowed from Safe.pm
sub delete_package {
my $pkg = shift;
my ($stem, $leaf);
no strict 'refs';
$pkg = "main::$pkg\::"; # expand to full symbol table name
($stem, $leaf) = $pkg =~ m/(.*::)(\w+::)$/;
my $stem_symtab = *{$stem}{HASH};
delete $stem_symtab->{$leaf};
}
sub eval_file {
my($filename, $delete) = @_;
my $package = valid_package_name($filename);
my $mtime = -M $filename;
if(defined $Cache{$package}{mtime}
&&
$Cache{$package}{mtime} <= $mtime)
{
# we have compiled this subroutine already,
# it has not been updated on disk, nothing left to do
print STDERR "already compiled $package->handler\n";
}
else {
local *FH;
open FH, $filename or die "open '$filename' $!";
local($/) = undef;
my $sub = <FH>;
close FH;
#wrap the code into a subroutine inside our unique package
my $eval = qq{package $package; sub handler { $sub; }};
{
# hide our variables within this block
my($filename,$mtime,$package,$sub);
eval $eval;
}
die $@ if $@;
#cache it unless we're cleaning out each time
$Cache{$package}{mtime} = $mtime unless $delete;
}
eval {$package->handler;};
die $@ if $@;
delete_package($package) if $delete;
#take a look if you want
#print Devel::Symdump->rnew($package)->as_string, $/;
}
1;
__END__
/* persistent.c */
#include <EXTERN.h>
#include <perl.h>
/* 1 = clean out filename's symbol table after each request, 0 = don't */
#ifndef DO_CLEAN
#define DO_CLEAN 0
#endif
static PerlInterpreter *perl = NULL;
int
main(int argc, char **argv, char **env)
{
char *embedding[] = { "", "persistent.pl" };
char *args[] = { "", DO_CLEAN, NULL };
char filename [1024];
int exitstatus = 0;
if((perl = perl_alloc()) == NULL) {
fprintf(stderr, "no memory!");
exit(1);
}
perl_construct(perl);
exitstatus = perl_parse(perl, NULL, 2, embedding, NULL);
if(!exitstatus) {
exitstatus = perl_run(perl);
while(printf("Enter file name: ") && gets(filename)) {
/* call the subroutine, passing it the filename as an argument */
args[0] = filename;
perl_call_argv("Embed::Persistent::eval_file",
G_DISCARD | G_EVAL, args);
/* check $@ */
if(SvTRUE(GvSV(errgv)))
fprintf(stderr, "eval error: %s\n", SvPV(GvSV(errgv),na));
}
}
perl_destruct_level = 0;
perl_destruct(perl);
perl_free(perl);
exit(exitstatus);
}
Now compile:
% cc -o persistent persistent.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
Here's a example script file:
#test.pl
my $string = "hello";
foo($string);
sub foo {
print "foo says: @_\n";
}
Now run:
% persistent
Enter file name: test.pl
foo says: hello
Enter file name: test.pl
already compiled Embed::test_2epl->handler
foo says: hello
Enter file name: ^C
Some rare applications will need to create more than one interpreter during
a session. Such an application might sporadically decide to release any
resources associated with the interpreter.
The program must take care to ensure that this takes place before
the next interpreter is constructed. By default, the global variable
perl_destruct_level is set to , since extra cleaning isn't needed when a program has only one
interpreter.
Setting perl_destruct_level to 1 makes everything squeaky clean:
perl_destruct_level = 1;
while(1) {
...
/* reset global variables here with perl_destruct_level = 1 */
perl_construct(my_perl);
...
/* clean and reset _everything_ during perl_destruct */
perl_destruct(my_perl);
perl_free(my_perl);
...
/* let's go do it again! */
}
When perl_destruct() is called, the interpreter's syntax parse tree and symbol tables are
cleaned up, and global variables are reset.
Now suppose we have more than one interpreter instance running at the same
time. This is feasible, but only if you used the
-DMULTIPLICITY flag when building Perl. By default, that sets
perl_destruct_level to 1 .
Let's give it a try:
#include <EXTERN.h>
#include <perl.h>
/* we're going to embed two interpreters */
/* we're going to embed two interpreters */
#define SAY_HELLO "-e", "print qq(Hi, I'm $^X\n)"
int main(int argc, char **argv, char **env)
{
PerlInterpreter
*one_perl = perl_alloc(),
*two_perl = perl_alloc();
char *one_args[] = { "one_perl", SAY_HELLO };
char *two_args[] = { "two_perl", SAY_HELLO };
perl_construct(one_perl);
perl_construct(two_perl);
perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);
perl_run(one_perl);
perl_run(two_perl);
perl_destruct(one_perl);
perl_destruct(two_perl);
perl_free(one_perl);
perl_free(two_perl);
}
Compile as usual:
% cc -o multiplicity multiplicity.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
Run it, Run it:
% multiplicity
Hi, I'm one_perl
Hi, I'm two_perl
If you've played with the examples above and tried to embed a script that use()s a Perl module (such as Socket) which itself uses a
C or
C++ library, this probably happened:
Can't load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)
What's wrong?
Your interpreter doesn't know how to communicate with these extensions on its own.
A little glue will help. Up until now you've been calling
perl_parse(), handing it
NULL for the second argument:
perl_parse(my_perl, NULL, argc, my_argv, NULL);
That's where the glue code can be inserted to create the initial contact between Perl and linked
C/C++ routines. Let's take a look some pieces of
perlmain.c
to see how Perl does this:
#ifdef __cplusplus
# define EXTERN_C extern "C"
#else
# define EXTERN_C extern
#endif
static void xs_init _((void));
EXTERN_C void boot_DynaLoader _((CV* cv));
EXTERN_C void boot_Socket _((CV* cv));
EXTERN_C void
xs_init()
{
char *file = __FILE__;
/* DynaLoader is a special case */
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
newXS("Socket::bootstrap", boot_Socket, file);
}
Simply put: for each extension linked with your Perl executable (determined
during its initial configuration on your computer or when adding a new
extension), a Perl subroutine is created to incorporate the extension's
routines. Normally, that subroutine is named
Module::bootstrap() and is invoked when you say use Module. In turn, this hooks into an
XSUB, boot_Module, which creates a Perl counterpart for each of the extension's XSUBs. Don't
worry about this part; leave that to the xsubpp and extension authors. If your extension is dynamically loaded, DynaLoader
creates Module::bootstrap()
for you on the fly. In fact, if you have a working DynaLoader then there is
rarely any need to link in any other extensions statically.
Once you have this code, slap it into the second argument of perl_parse():
perl_parse(my_perl, xs_init, argc, my_argv, NULL);
Then compile:
% cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`
% interp
use Socket;
use SomeDynamicallyLoadedModule;
print "Now I can use extensions!\n"'
ExtUtils::Embed can also automate writing the xs_init glue code.
% perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c
% cc -c perlxsi.c `perl -MExtUtils::Embed -e ccopts`
% cc -c interp.c `perl -MExtUtils::Embed -e ccopts`
% cc -o interp perlxsi.o interp.o `perl -MExtUtils::Embed -e ldopts`
Consult the perlxs manpage and the perlguts manpage for more details.
At the time of this writing, there are two versions of Perl which run under Win32. Interfacing to Activeware's Perl library is quite different from the examples in this documentation, as significant changes were made to the internal Perl
API. However, it is possible to embed Activeware's Perl runtime, see the Perl for Win32
FAQ: http://www.perl.com/perl/faq/win32/Perl_for_Win32_FAQ.html
With the ``official'' Perl version 5.004 or higher, all the examples within
this documentation will compile and run untouched, although, the build
process is slightly different between Unix and Win32.
For starters, backticks don't work under the Win32 native command shell! The ExtUtils::Embed kit on
CPAN ships with a script called
genmake, which generates a simple makefile to build a program from a single
C source file. It can be used like so:
C:\ExtUtils-Embed\eg> perl genmake interp.c
C:\ExtUtils-Embed\eg> nmake
C:\ExtUtils-Embed\eg> interp -e "print qq{I'm embedded in Win32!\n}"
You may wish to use a more robust environment such as the
MS Developer stdio. In this case, to generate
perlxsi.c run:
perl -MExtUtils::Embed -e xsinit
Create a new project, Insert -> Files into Project: perlxsi.c, perl.lib,
and your own source files, e.g. interp.c. Typically you'll find perl.lib in C:\perl\lib\CORE, if not, you should see the CORE
directory relative to perl -V:archlib . The studio will also need this path so it knows where to find Perl
include files. This path can be added via the Tools -> Options ->
Directories menu. Finnally, select Build -> Build interp.exe and you're
ready to go!
You can sometimes write faster code in
C, but you can always write code faster in Perl. Because you can use each from the other, combine them as you wish.
Jon Orwant and <orwant@tpj.com> and Doug MacEachern <dougm@osf.org>, with small contributions from Tim Bunce, Tom Christiansen, Hallvard
Furuseth, Dov Grobgeld, and Ilya Zakharevich.
Check out Doug's article on embedding in Volume 1, Issue 4 of The Perl Journal. Info about
TPJ is available from http://tpj.com.
July 17, 1997
Some of this material is excerpted from Jon Orwant's book: Perl 5
Interactive, Waite Group Press, 1996
(ISBN 1-57169-064-6) and appears courtesy of Waite
Group Press.
Copyright
(C) 1995, 1996, 1997 Doug MacEachern and Jon Orwant.
All Rights Reserved.
Although destined for release with the standard Perl distribution, this
document is not public domain, nor is any of Perl and its documentation.
Permission is granted to freely distribute verbatim copies of this document
provided that no modifications outside of formatting be made, and that this
notice remain intact. You are permitted and encouraged to use its code and
derivatives thereof in your own source code for fun or for profit as you
see fit.
Source: Perl manual pages Copyright: (C) 1995, 1996, 1997 Doug MacEachern and Jon Orwant |