perlLoL - Manipulating Lists of Lists in Perl
perlLoL - Manipulating Lists of Lists in Perl
The simplest thing to build is a list of lists (sometimes called an array
of arrays). It's reasonably easy to understand, and almost everything that
applies here will also be applicable later on with the fancier data
structures.
A list of lists, or an array of an array if you would,
is just a regular old array @LoL that you can get at with two
subscripts, like $LoL[3][2] . Here's a declaration of the array:
# assign to our array a list of list references
@LoL = (
[ "fred", "barney" ],
[ "george", "jane", "elroy" ],
[ "homer", "marge", "bart" ],
);
print $LoL[2][2];
bart
Now you should be very careful that the outer bracket type is a round one,
that is, parentheses. That's because you're assigning to an @list, so you
need parentheses. If you wanted there not to be an @LoL, but rather just a reference to it, you could do something
more like this:
# assign a reference to list of list references
$ref_to_LoL = [
[ "fred", "barney", "pebbles", "bambam", "dino", ],
[ "homer", "bart", "marge", "maggie", ],
[ "george", "jane", "alroy", "judy", ],
];
print $ref_to_LoL->[2][2];
Notice that the outer bracket type has changed, and so our access syntax has also changed. That's because unlike
C, in perl you can't freely interchange arrays and references thereto. $ref_to_LoL is a reference to an array, whereas @LoL is an array proper. Likewise,
$LoL[2] is not an array, but an array ref. So how come you can write these:
$LoL[2][2]
$ref_to_LoL->[2][2]
instead of having to write these:
$LoL[2]->[2]
$ref_to_LoL->[2]->[2]
Well, that's because the rule is that on adjacent brackets only (whether
square or curly), you are free to omit the pointer dereferencing arrow. But
you cannot do so for the very first one if it's a scalar containing a
reference, which means that $ref_to_LoL always needs it.
That's all well and good for declaration of a fixed data structure, but
what if you wanted to add new elements on the fly, or build it up entirely
from scratch?
First, let's look at reading it in from a file. This is something like
adding a row at a time. We'll assume that there's a flat file in which each
line is a row and each word an element. If you're trying to develop an
@LoL list containing all these, here's the right way to do
that:
while (<>) {
@tmp = split;
push @LoL, [ @tmp ];
}
You might also have loaded that from a function:
for $i ( 1 .. 10 ) {
$LoL[$i] = [ somefunc($i) ];
}
Or you might have had a temporary variable sitting around with the list in
it.
for $i ( 1 .. 10 ) {
@tmp = somefunc($i);
$LoL[$i] = [ @tmp ];
}
It's very important that you make sure to use the [] list reference constructor. That's because this will be very wrong:
$LoL[$i] = @tmp;
You see, assigning a named list like that to a scalar just counts the
number of elements in @tmp, which probably isn't what you want.
If you are running under use strict , you'll have to add some declarations to make it happy:
use strict;
my(@LoL, @tmp);
while (<>) {
@tmp = split;
push @LoL, [ @tmp ];
}
Of course, you don't need the temporary array to have a name at all:
while (<>) {
push @LoL, [ split ];
}
You also don't have to use push(). You could just make a
direct assignment if you knew where you wanted to put it:
my (@LoL, $i, $line);
for $i ( 0 .. 10 ) {
$line = <>;
$LoL[$i] = [ split ' ', $line ];
}
or even just
my (@LoL, $i);
for $i ( 0 .. 10 ) {
$LoL[$i] = [ split ' ', <> ];
}
You should in general be leery of using potential list functions in a
scalar context without explicitly stating such. This would be clearer to
the casual reader:
my (@LoL, $i);
for $i ( 0 .. 10 ) {
$LoL[$i] = [ split ' ', scalar(<>) ];
}
If you wanted to have a $ref_to_LoL variable as a reference to
an array, you'd have to do something like this:
while (<>) {
push @$ref_to_LoL, [ split ];
}
Actually, if you were using strict, you'd have to declare not only
$ref_to_LoL as you had to declare @LoL, but you'd also having to initialize it to a reference to an empty list. (This was a bug in
perl version 5.001m that's been fixed for the 5.002 release.)
my $ref_to_LoL = [];
while (<>) {
push @$ref_to_LoL, [ split ];
}
Ok, now you can add new rows. What about adding new columns? If you're
dealing with just matrices, it's often easiest to use simple assignment:
for $x (1 .. 10) {
for $y (1 .. 10) {
$LoL[$x][$y] = func($x, $y);
}
}
for $x ( 3, 7, 9 ) {
$LoL[$x][20] += func2($x);
}
It doesn't matter whether those elements are already there or not: it'll
gladly create them for you, setting intervening elements to undef as need be.
If you wanted just to append to a row, you'd have to do something a bit
funnier looking:
# add new columns to an existing row
push @{ $LoL[0] }, "wilma", "betty";
Notice that
I couldn't say just:
push $LoL[0], "wilma", "betty"; # WRONG!
In fact, that wouldn't even compile. How come? Because the argument to
push() must be a real array, not just a reference to such.
Now it's time to print your data structure out. How are you going to do
that? Well, if you want only one of the elements, it's trivial:
print $LoL[0][0];
If you want to print the whole thing, though, you can't say
print @LoL; # WRONG
because you'll get just references listed, and perl will never
automatically dereference things for you. Instead, you have to roll
yourself a loop or two. This prints the whole structure, using the
shell-style for() construct to loop across the outer set of
subscripts.
for $aref ( @LoL ) {
print "\t [ @$aref ],\n";
}
If you wanted to keep track of subscripts, you might do this:
for $i ( 0 .. $#LoL ) {
print "\t elt $i is [ @{$LoL[$i]} ],\n";
}
or maybe even this. Notice the inner loop.
for $i ( 0 .. $#LoL ) {
for $j ( 0 .. $#{$LoL[$i]} ) {
print "elt $i $j is $LoL[$i][$j]\n";
}
}
As you can see, it's getting a bit complicated. That's why sometimes is
easier to take a temporary on your way through:
for $i ( 0 .. $#LoL ) {
$aref = $LoL[$i];
for $j ( 0 .. $#{$aref} ) {
print "elt $i $j is $LoL[$i][$j]\n";
}
}
Hmm... that's still a bit ugly. How about this:
for $i ( 0 .. $#LoL ) {
$aref = $LoL[$i];
$n = @$aref - 1;
for $j ( 0 .. $n ) {
print "elt $i $j is $LoL[$i][$j]\n";
}
}
If you want to get at a slice (part of a row) in a multidimensional array,
you're going to have to do some fancy subscripting. That's because while we
have a nice synonym for single elements via the pointer arrow for
dereferencing, no such convenience exists for slices. (Remember, of course,
that you can always write a loop to do a slice operation.)
Here's how to do one operation using a loop. We'll assume an
@LoL variable as before.
@part = ();
$x = 4;
for ($y = 7; $y < 13; $y++) {
push @part, $LoL[$x][$y];
}
That same loop could be replaced with a slice operation:
@part = @{ $LoL[4] } [ 7..12 ];
but as you might well imagine, this is pretty rough on the reader.
Ah, but what if you wanted a two-dimensional slice, such as having $x run from 4..8 and $y run from 7 to 12? Hmm... here's the simple way:
@newLoL = ();
for ($startx = $x = 4; $x <= 8; $x++) {
for ($starty = $y = 7; $y <= 12; $y++) {
$newLoL[$x - $startx][$y - $starty] = $LoL[$x][$y];
}
}
We can reduce some of the looping through slices
for ($x = 4; $x <= 8; $x++) {
push @newLoL, [ @{ $LoL[$x] } [ 7..12 ] ];
}
If you were into Schwartzian Transforms, you would probably have selected
map for that
@newLoL = map { [ @{ $LoL[$_] } [ 7..12 ] ] } 4 .. 8;
Although if your manager accused of seeking job security (or rapid insecurity) through inscrutable code, it would be hard to argue. :-) If
I were you, I'd put that in a function:
@newLoL = splice_2D( \@LoL, 4 => 8, 7 => 12 );
sub splice_2D {
my $lrr = shift; # ref to list of list refs!
my ($x_lo, $x_hi,
$y_lo, $y_hi) = @_;
return map {
[ @{ $lrr->[$_] } [ $y_lo .. $y_hi ] ]
} $x_lo .. $x_hi;
}
perldata(1), perlref(1), perldsc(1)
Tom Christiansen <tchrist@perl.com>
Last udpate: Sat Oct 7 19:35:26
MDT 1995
Source: Perl manual pages Copyright: Tom Christiansen |