icon Top 9 categories map      RocketAware >

csh(1)

Tips: Browse or Search all pages for efficient awareness of more than 6000 of the most popular reusable and open source applications, functions, libraries, and FAQs.


The "RKT couplings" below include links to source code, updates, additional information, advice, FAQs, and overviews.


Home

Search all pages


Subjects

By activity
Professions, Sciences, Humanities, Business, ...

User Interface
Text-based, GUI, Audio, Video, Keyboards, Mouse, Images,...

Text Strings
Conversions, tests, processing, manipulation,...

Math
Integer, Floating point, Matrix, Statistics, Boolean, ...

Processing
Algorithms, Memory, Process control, Debugging, ...

Stored Data
Data storage, Integrity, Encryption, Compression, ...

Communications
Networks, protocols, Interprocess, Remote, Client Server, ...

Hard World
Timing, Calendar and Clock, Audio, Video, Printer, Controls...

File System
Management, Filtering, File & Directory access, Viewers, ...

    

RocketLink!--> Man page versions: OpenBSD FreeBSD NetBSD Others



CSH(1)                     OpenBSD Reference Manual                     CSH(1)

NAME
     csh - a shell (command interpreter) with C-like syntax



SYNOPSIS
     csh [-bcefimnstvVxX] [argument ...]
     csh [-l]

DESCRIPTION
     csh is a command language interpreter incorporating a history mechanism
     (see History substitutions), job control facilities (see Jobs), interac-
     tive file name and user name completion (see File name completion), and a
     C-like syntax. It is used both as an interactive login shell and a shell
     script command processor.

   Argument list processing
     If the first argument (argument 0) to the shell is a dash (`-'), then
     this is a login shell.  A login shell also can be specified by invoking
     the shell with the -l flag as the only argument.

     The rest of the flag arguments are interpreted as follows:

     -b     This flag forces a ``break'' from option processing, causing any
            further shell arguments to be treated as non-option arguments.
            The remaining arguments will not be interpreted as shell options.
            This may be used to pass options to a shell script without confu-
            sion or possible subterfuge.  The shell will not run a set-user-ID
            script without this option.

     -c     Commands are read from the (single) following argument which must
            be present.  Any remaining arguments are placed in argv.

     -e     The shell exits if any invoked command terminates abnormally or
            yields a non-zero exit status.

     -f     The shell will start faster, because it will neither search for
            nor execute commands from the file .cshrc in the invoker's home
            directory.

     -i     The shell is interactive and prompts for its top-level input, even
            if it appears not to be a terminal.  Shells are interactive with-
            out this option if their inputs and outputs are terminals.

     -l     The shell is a login shell (only applicable if -l is the only flag
            specified).

     -m     Read .cshrc, regardless of its owner and group. This option is
            dangerous and should only be used by su(1).

     -n     Commands are parsed, but not executed.  This aids in syntactic
            checking of shell scripts. When used interactively, the shell can
            be terminated by pressing control-D (end-of-file character), since
            exit will not work.

     -s     Command input is taken from the standard input.

     -t     A single line of input is read and executed.  A backslash (`\')
            may be used to escape the newline at the end of this line and con-
            tinue onto another line.

     -v     Causes the verbose variable to be set, with the effect that com-
            mand input is echoed after history substitution.

     -x     Causes the echo variable to be set, so that commands are echoed

            immediately before execution.

     -V     Causes the verbose variable to be set even before .cshrc is exe-
            cuted.

     -X     Is to -x as -V is to -v.

     After processing of flag arguments, if arguments remain but none of the
     -c, -i, -s, or -t options were given, the first argument is taken as the
     name of a file of commands to be executed.  The shell opens this file,
     and saves its name for possible resubstitution by `$0'. Since many sys-
     tems use either the standard version 6 or version 7 shells whose shell
     scripts are not compatible with this shell, the shell will execute such a
     ``standard'' shell if the first character of a script is not a hash mark
     (`#'); i.e., if the script does not start with a comment.  Remaining ar-
     guments initialize the variable argv.

     An instance of csh begins by executing commands from the file
     /etc/csh.cshrc and, if this is a login shell, /etc/csh.login. It then ex-
     ecutes commands from .cshrc in the home directory of the invoker, and, if
     this is a login shell, the file .login in the same location.  It is typi-
     cal for users on CRTs to put the command stty crt in their .login file,
     and to also invoke tset(1) there.

     In the normal case, the shell will begin reading commands from the termi-
     nal, prompting with `% .' Processing of arguments and the use of the
     shell to process files containing command scripts will be described lat-
     er.

     The shell repeatedly performs the following actions: a line of command
     input is read and broken into ``words''. This sequence of words is placed
     on the command history list and parsed.  Finally each command in the cur-
     rent line is executed.

     When a login shell terminates it executes commands from the files .logout
     in the user's home directory and /etc/csh.logout.

   Lexical structure
     The shell splits input lines into words at blanks and tabs with the fol-
     lowing exceptions.  The characters `&', `|', `;', `<', `>', `(', and `)'
     form separate words.  If doubled in `&&', `||', `<<', or `>>', these
     pairs form single words.  These parser metacharacters may be made part of
     other words, or prevented their special meaning, by preceding them with a
     backslash (`\'). A newline preceded by a `\' is equivalent to a blank.

     Strings enclosed in matched pairs of quotations, `'', ``', or `"', form
     parts of a word; metacharacters in these strings, including blanks and
     tabs, do not form separate words.  These quotations have semantics to be
     described later.  Within pairs of `'' or `"' characters, a newline pre-
     ceded by a `\' gives a true newline character.

     When the shell's input is not a terminal, the character `#' introduces a
     comment that continues to the end of the input line.  It is prevented
     this special meaning when preceded by `\' and in quotations using ``',
     `'', and `"'.

   Commands
     A simple command is a sequence of words, the first of which specifies the
     command to be executed.  A simple command or a sequence of simple com-
     mands separated by `|' characters forms a pipeline.  The output of each
     command in a pipeline is connected to the input of the next.  Sequences
     of pipelines may be separated by `;', and are then executed sequentially.
     A sequence of pipelines may be executed without immediately waiting for
     it to terminate by following it with a `&'.

     Any of the above may be placed in `(' `)' to form a simple command (that
     may be a component of a pipeline, for example).  It is also possible to
     separate pipelines with `||' or `&&' showing, as in the C language, that
     the second is to be executed only if the first fails or succeeds, respec-
     tively. (See Expressions.)

   Jobs
     The shell associates a job with each pipeline.  It keeps a table of cur-
     rent jobs, printed by the jobs command, and assigns them small integer
     numbers.  When a job is started asynchronously with `&', the shell prints
     a line that looks like:

           [1] 1234

     showing that the job which was started asynchronously was job number 1
     and had one (top-level) process, whose process ID was 1234.

     If you are running a job and wish to do something else you may hit ^Z
     (control-Z) which sends a SIGSTOP signal to the current job.  The shell
     will then normally show that the job has been ``Stopped'', and print an-
     other prompt.  You can then manipulate the state of this job, putting it
     in the background with the bg command, or run some other commands and
     eventually bring the job back into the foreground with the fg command.  A
     ^Z takes effect immediately and is like an interrupt in that pending out-
     put and unread input are discarded when it is typed.  There is another
     special key ^Y that does not generate a SIGSTOP signal until a program
     attempts to read(2) it.  This request can usefully be typed ahead when
     you have prepared some commands for a job that you wish to stop after it
     has read them.

     A job being run in the background will stop if it tries to read from the
     terminal.  Background jobs are normally allowed to produce output, but
     this can be disabled by giving the command stty tostop. If you set this
     tty option, then background jobs will stop when they try to produce out-
     put like they do when they try to read input.

     There are several ways to refer to jobs in the shell.  The character `%'
     introduces a job name.  If you wish to refer to job number 1, you can
     name it as `%1'. Just naming a job brings it to the foreground; thus %1
     is a synonym for fg %1, bringing job number 1 back into the foreground.
     Similarly, saying %1 & resumes job number 1 in the background.  Jobs can
     also be named by prefixes of the string typed in to start them, if these
     prefixes are unambiguous; thus %ex would normally restart a suspended
     ex(1) job, if there were only one suspended job whose name began with the
     string "ex". It is also possible to say %?string which specifies a job
     whose text contains string, if there is only one such job.

     The shell maintains a notion of the current and previous jobs.  In output
     about jobs, the current job is marked with a `+' and the previous job
     with a `-'. The abbreviation `%+' refers to the current job and `%-'
     refers to the previous job.  For close analogy with the syntax of the
     history mechanism (described below), `%%' is also a synonym for the cur-
     rent job.

     The job control mechanism requires that the stty(1) option new be set. It
     is an artifact from a new implementation of the tty driver that allows
     generation of interrupt characters from the keyboard to tell jobs to
     stop.  See stty(1) for details on setting options in the new tty driver.

   Status reporting
     This shell learns immediately whenever a process changes state.  It nor-
     mally informs you whenever a job becomes blocked so that no further
     progress is possible, but only just before it prints a prompt.  This is
     done so that it does not otherwise disturb your work.  If, however, you
     set the shell variable notify, the shell will notify you immediately of
     changes of status in background jobs.  There is also a shell command
     notify that marks a single process so that its status changes will be im-
     mediately reported.  By default notify marks the current process; simply
     say notify after starting a background job to mark it.

     When you try to leave the shell while jobs are stopped, you will be
     warned that ``You have stopped jobs''. You may use the jobs command to
     see what they are.  If you do this or immediately try to exit again, the
     shell will not warn you a second time, and the suspended jobs will be
     terminated.

   File name completion
     When the file name completion feature is enabled by setting the shell
     variable filec (see set), csh will interactively complete file names and
     user names from unique prefixes when they are input from the terminal
     followed by the escape character (the escape key, or control-[).  For ex-
     ample, if the current directory looks like

           DSC.OLD  bin      cmd      lib      xmpl.c
           DSC.NEW  chaosnet cmtest   mail     xmpl.o
           bench    class    dev      mbox     xmpl.out

     and the input is

           % vi ch<escape>

     csh will complete the prefix ``ch'' to the only matching file name
     ``chaosnet'', changing the input line to

           % vi chaosnet

     However, given

           % vi D<escape>

     csh will only expand the input to

           % vi DSC.

     and will sound the terminal bell to indicate that the expansion is incom-
     plete, since there are two file names matching the prefix `D'.

     If a partial file name is followed by the end-of-file character (usually
     control-D), then, instead of completing the name, csh will list all file
     names matching the prefix.  For example, the input

           % vi D<control-D>

     causes all files beginning with `D' to be listed:

           DSC.NEW   DSC.OLD

     while the input line remains unchanged.

     The same system of escape and end-of-file can also be used to expand par-
     tial user names, if the word to be completed (or listed) begins with the
     tilde character (`~'). For example, typing

           cd ~ro<escape>

     may produce the expansion

           cd ~root

     The use of the terminal bell to signal errors or multiple matches can be
     inhibited by setting the variable nobeep.

     Normally, all files in the particular directory are candidates for name
     completion.  Files with certain suffixes can be excluded from considera-
     tion by setting the variable fignore to the list of suffixes to be ig-
     nored.  Thus, if fignore is set by the command

           % set fignore = (.o .out)

     then typing

           % vi x<escape>

     would result in the completion to

           % vi xmpl.c

     ignoring the files "xmpl.o" and "xmpl.out". However, if the only comple-
     tion possible requires not ignoring these suffixes, then they are not ig-
     nored.  In addition, fignore does not affect the listing of file names by
     control-D.  All files are listed regardless of their suffixes.

   Substitutions
     We now describe the various transformations the shell performs on the in-
     put in the order in which they occur.

   History substitutions
     History substitutions place words from previous command input as portions
     of new commands, making it easy to repeat commands, repeat arguments of a
     previous command in the current command, or fix spelling mistakes in the
     previous command with little typing and a high degree of confidence.
     History substitutions begin with the character `!' and may begin anywhere
     in the input stream (with the proviso that they do not nest.)  This `!'
     may be preceded by a `\' to prevent its special meaning; for convenience,
     a `!' character is passed unchanged when it is followed by a blank, tab,
     newline, `=' or `('. (History substitutions also occur when an input line
     begins with `^'. This special abbreviation will be described later.)  Any
     input line that contains history substitution is echoed on the terminal
     before it is executed as it could have been typed without history substi-
     tution.

     Commands input from the terminal that consist of one or more words are
     saved on the history list.  The history substitutions reintroduce se-
     quences of words from these saved commands into the input stream.  The
     size of the history list is controlled by the history variable; the pre-
     vious command is always retained, regardless of the value of the history
     variable.  Commands are numbered sequentially from 1.

     For definiteness, consider the following output from the history command:

            9  write michael
           10  ex write.c
           11  cat oldwrite.c
           12  diff *write.c

     The commands are shown with their event numbers.  It is not usually nec-
     essary to use event numbers, but the current event number can be made
     part of the prompt by placing a `!' in the prompt string.

     With the current event 13 we can refer to previous events by event number
     `!11', relatively as in `!-2' (referring to the same event), by a prefix
     of a command word as in `!d' for event 12 or `!wri' for event 9, or by a
     string contained in a word in the command as in `!?mic?' also referring
     to event 9.  These forms, without further change, simply reintroduce the
     words of the specified events, each separated by a single blank.  As a
     special case, `!!' refers to the previous command; thus `!!' alone is a
     redo.

     To select words from an event we can follow the event specification by a
     `:' and a designator for the desired words.  The words of an input line
     are numbered from 0, the first (usually command) word being 0, the second
     word (first argument) being 1, etc.  The basic word designators are:

           0       first (command) word
           n       n'th argument
           ^       first argument; i.e., `1'
           $       last argument
           %       word matched by (immediately preceding) ?s? search
           x-y     range of words
           -y      abbreviates `0-y'
           *       abbreviates `^-$', or nothing if only 1 word in event
           x*      abbreviates `x-$'
           x-      like `x*' but omitting word `$'

     The `:' separating the event specification from the word designator can
     be omitted if the argument selector begins with a `^', `$', `*', `-', or
     `%'. After the optional word designator can be placed a sequence of modi-
     fiers, each preceded by a `:'. The following modifiers are defined:

           h       Remove a trailing pathname component, leaving the head.
           r       Remove a trailing `.xxx' component, leaving the root name.
           e       Remove all but the extension `.xxx' part.
           s/l/r/  Substitute l for r.
           t       Remove all leading pathname components, leaving the tail.
           &       Repeat the previous substitution.
           g       Apply the change once on each word, prefixing the above;
                   e.g., `g&'.
           a       Apply the change as many times as possible on a single
                   word, prefixing the above. It can be used together with `g'
                   to apply a substitution globally.
           p       Print the new command line but do not execute it.
           q       Quote the substituted words, preventing further substitu-
                   tions.
           x       Like `q', but break into words at blanks, tabs and new-
                   lines.

     Unless preceded by a `g' the change is applied only to the first modifi-
     able word.  With substitutions, it is an error for no word to be applica-
     ble.

     The left-hand side of substitutions are not regular expressions in the
     sense of the editors, but instead strings.  Any character may be used as
     the delimiter in place of `/'; a `\' quotes the delimiter into the l and
     r strings.  The character `&' in the right-hand side is replaced by the
     text from the left.  A `\' also quotes `&'. A NULL l (`//') uses the pre-
     vious string either from an l or from a contextual scan string s in
     `!?s\?'. The trailing delimiter in the substitution may be omitted if a
     newline follows immediately as may the trailing `?' in a contextual scan.

     A history reference may be given without an event specification; e.g.,
     `!$'. Here, the reference is to the previous command unless a previous
     history reference occurred on the same line in which case this form re-
     peats the previous reference.  Thus ``!?foo?^ !$'' gives the first and
     last arguments from the command matching ``?foo?''.

     A special abbreviation of a history reference occurs when the first non-
     blank character of an input line is a `^'. This is equivalent to ``!:s^''
     providing a convenient shorthand for substitutions on the text of the
     previous line.  Thus ^lb^lib fixes the spelling of ``lib'' in the previ-
     ous command.  Finally, a history substitution may be surrounded with `{'
     and `}' if necessary to insulate it from the characters that follow.
     Thus, after ls -ld ~paul we might do !{l}a to do ls -ld ~paula, while !la
     would look for a command starting with ``la''.

   Quotations with ' and "
     The quotation of strings by `'' and `"' can be used to prevent all or
     some of the remaining substitutions.  Strings enclosed in `'' are pre-
     vented any further interpretation.  Strings enclosed in `"' may be ex-
     panded as described below.

     In both cases the resulting text becomes (all or part of) a single word;
     only in one special case (see Command Substitution below) does a `"'
     quoted string yield parts of more than one word; `'' quoted strings never
     do.

   Alias substitution
     The shell maintains a list of aliases that can be established, displayed
     and modified by the alias and unalias commands.  After a command line is
     scanned, it is parsed into distinct commands and the first word of each
     command, left-to-right, is checked to see if it has an alias.  If it
     does, then the text that is the alias for that command is reread with the
     history mechanism available as though that command were the previous in-
     put line.  The resulting words replace the command and argument list.  If
     no reference is made to the history list, then the argument list is left
     unchanged.

     Thus if the alias for ``ls'' is ``ls -l'', the command ls /usr would map
     to ls -l /usr, the argument list here being undisturbed.  Similarly, if
     the alias for ``lookup'' was ``grep !^ /etc/passwd'' then lookup bill
     would map to grep bill /etc/passwd.

     If an alias is found, the word transformation of the input text is per-
     formed and the aliasing process begins again on the reformed input line.
     Looping is prevented if the first word of the new text is the same as the
     old by flagging it to prevent further aliasing.  Other loops are detected
     and cause an error.

     Note that the mechanism allows aliases to introduce parser metasyntax.
     Thus, we can alias print 'pr \!* | lpr' to make a command that pr's its
     arguments to the line printer.

   Variable substitution
     The shell maintains a set of variables, each of which has as value a list
     of zero or more words.  Some of these variables are set by the shell or
     referred to by it.  For instance, the argv variable is an image of the
     shell's argument list, and words of this variable's value are referred to
     in special ways.

     The values of variables may be displayed and changed by using the set and
     unset commands.  Of the variables referred to by the shell a number are
     toggles; the shell does not care what their value is, only whether they
     are set or not.  For instance, the verbose variable is a toggle that
     causes command input to be echoed.  The setting of this variable results
     from the -v command-line option.

     Other operations treat variables numerically.  The @ command permits nu-
     meric calculations to be performed and the result assigned to a variable.
     Variable values are, however, always represented as (zero or more)
     strings.  For the purposes of numeric operations, the null string is con-
     sidered to be zero, and the second and additional words of multiword val-
     ues are ignored.

     After the input line is aliased and parsed, and before each command is
     executed, variable substitution is performed keyed by `$' characters.
     This expansion can be prevented by preceding the `$' with a `\' except
     within "'s where it always occurs, and within ''s where it never occurs.
     Strings quoted by backticks (` `) are interpreted later (see Command
     substitution below) so `$' substitution does not occur there until later,
     if at all.  A `$' is passed unchanged if followed by a blank, tab, or
     end-of-line.
     Input/output redirections are recognized before variable expansion, and
     are variable expanded separately.  Otherwise, the command name and entire
     argument list are expanded together.  It is thus possible for the first
     (command) word (to this point) to generate more than one word, the first
     of which becomes the command name, and the rest of which become argu-
     ments.

     Unless enclosed in `"' or given the `:q' modifier, the results of vari-
     able substitution may eventually be command and filename substituted.
     Within `"', a variable whose value consists of multiple words expands to
     a (portion of) a single word, with the words of the variables value sepa-
     rated by blanks.  When the `:q' modifier is applied to a substitution the
     variable will expand to multiple words with each word separated by a
     blank and quoted to prevent later command or filename substitution.

     The following metasequences are provided for introducing variable values
     into the shell input.  Except as noted, it is an error to reference a
     variable that is not set.

           $name
           ${name}
                   Are replaced by the words of the value of variable name,
                   each separated by a blank.  Braces insulate name from fol-
                   lowing characters that would otherwise be part of it.
                   Shell variables have names consisting of up to 20 letters
                   and digits starting with a letter.  The underscore charac-
                   ter is considered a letter.  If name is not a shell vari-
                   able, but is set in the environment, then that value is re-
                   turned (but `:' modifiers and the other forms given below
                   are not available here).
           $name[selector]
           ${name[selector]}
                   May be used to select only some of the words from the value
                   of name. The selector is subjected to `$' substitution and
                   may consist of a single number or two numbers separated by
                   a `-'. The first word of a variables value is numbered `1'.
                   If the first number of a range is omitted it defaults to
                   `1'. If the last number of a range is omitted it defaults
                   to `$#name'. The selector `*' selects all words.  It is not
                   an error for a range to be empty if the second argument is
                   omitted or in range.
           $#name
           ${#name}
                   Gives the number of words in the variable.  This is useful
                   for later use in a ``$argv[selector]''.
           $0      Substitutes the name of the file from which command input
                   is being read.  An error occurs if the name is not known.
           $number
           ${number}
                   Equivalent to ``$argv[number]''.
           $*      Equivalent to ``$argv[*]''.

     The modifiers `:e', `:h', `:t', `:r', `:q', and `:x' may be applied to
     the substitutions above as may `:gh', `:gt', and `:gr'. If braces `{' `}'
     appear in the command form then the modifiers must appear within the
     braces.  The current implementation allows only one `:' modifier on each
     `$' expansion.

     The following substitutions may not be modified with `:' modifiers.
           $?name
           ${?name}
                   Substitutes the string ``1'' if name is set, ``0'' if it is
                   not.
           $?0     Substitutes `1' if the current input filename is known, `0'


                   if it is not.
           $$      Substitute the (decimal) process number of the (parent)
                   shell.
           $!      Substitute the (decimal) process number of the last back-
                   ground process started by this shell.
           $<      Substitutes a line from the standard input, with no further
                   interpretation.  It can be used to read from the keyboard
                   in a shell script.

   Command and filename substitution
     The remaining substitutions, command and filename substitution, are ap-
     plied selectively to the arguments of built-in commands.  By selectively,
     we mean that portions of expressions which are not evaluated are not sub-
     jected to these expansions.  For commands that are not internal to the
     shell, the command name is substituted separately from the argument list.
     This occurs very late, after input-output redirection is performed, and
     in a child of the main shell.

   Command substitution
     Command substitution is shown by a command enclosed in ``'. The output
     from such a command is normally broken into separate words at blanks,
     tabs and newlines, with null words being discarded; this text then re-
     places the original string.  Within "'s, only newlines force new words;
     blanks and tabs are preserved.

     In any case, the single final newline does not force a new word.  Note
     that it is thus possible for a command substitution to yield only part of
     a word, even if the command outputs a complete line.

   Filename substitution
     If a word contains any of the characters `*', `?', `[', or `{', or begins
     with the character `~', then that word is a candidate for filename sub-
     stitution, also known as ``globbing''. This word is then regarded as a
     pattern, and replaced with an alphabetically sorted list of file names
     that match the pattern.  In a list of words specifying filename substitu-
     tion it is an error for no pattern to match an existing file name, but it
     is not required for each pattern to match.  Only the metacharacters `*',
     `?', and `[' imply pattern matching, the characters `~' and `{' being
     more akin to abbreviations.

     In matching filenames, the character `.' at the beginning of a filename
     or immediately following a `/', as well as the character `/' must be
     matched explicitly.  The character `*' matches any string of characters,
     including the null string.  The character `?' matches any single charac-
     ter.  The sequence ``[...]'' matches any one of the characters enclosed.
     Within ``[...]'', a pair of characters separated by `-' matches any char-
     acter lexically between the two (inclusive).

     The character `~' at the beginning of a filename refers to home directo-
     ries.  Standing alone, i.e., `~', it expands to the invokers home direc-
     tory as reflected in the value of the variable home. When followed by a
     name consisting of letters, digits and `-' characters, the shell searches
     for a user with that name and substitutes their home directory;  thus
     ``~ken'' might expand to ``/usr/ken'' and ``~ken/chmach'' to
     ``/usr/ken/chmach''. If the character `~' is followed by a character oth-
     er than a letter or `/', or does not appear at the beginning of a word,
     it is left undisturbed.

     The metanotation ``a{b,c,d}e'' is a shorthand for ``abe ace ade''. Left
     to right order is preserved, with results of matches being sorted sepa-
     rately at a low level to preserve this order.  This construct may be
     nested.  Thus, ``~source/s1/{oldls,ls}.c'' expands to
     ``/usr/source/s1/oldls.c /usr/source/s1/ls.c'' without chance of error if
     the home directory for ``source'' is ``/usr/source''. Similarly
     ``../{memo,*box}'' might expand to ``../memo ../box ../mbox''. (Note that
     ``memo'' was not sorted with the results of the match to ``*box''.) As a
     special case `{', `}', and `{}' are passed undisturbed.

   Input/output
     The standard input and the standard output of a command may be redirected
     with the following syntax:

           < name  Open file name (which is first variable, command and file-
                   name expanded) as the standard input.
           << word
                   Read the shell input up to a line that is identical to
                   word. word is not subjected to variable, filename or com-
                   mand substitution, and each input line is compared to word
                   before any substitutions are done on the input line.  Un-
                   less a quoting `\', `"', `'' or ``' appears in word, vari-
                   able and command substitution is performed on the interven-
                   ing lines, allowing `\' to quote `$', `\' and ``'. Commands
                   that are substituted have all blanks, tabs, and newlines
                   preserved, except for the final newline which is dropped.
                   The resultant text is placed in an anonymous temporary file
                   that is given to the command as its standard input.
           > name
           >! name
           >& name
           >&! name
                   The file name is used as the standard output.  If the file
                   does not exist then it is created; if the file exists, it
                   is truncated; its previous contents are lost.

                   If the variable noclobber is set, then the file must not
                   exist or be a character special file (e.g., a terminal or
                   /dev/null) or an error results.  This helps prevent acci-
                   dental destruction of files.  Here, the `!' forms can be
                   used to suppress this check.

                   The forms involving `&' route the standard error output in-
                   to the specified file as well as the standard output.  name
                   is expanded in the same way as `<' input filenames are.
           >> name
           >>& name
           >>! name
           >>&! name
                   Uses file name as the standard output; like `>' but places
                   output at the end of the file.  If the variable noclobber
                   is set, then it is an error for the file not to exist un-
                   less one of the `!' forms is given.  Otherwise similar to
                   `>'.

     A command receives the environment in which the shell was invoked as mod-
     ified by the input-output parameters and the presence of the command in a
     pipeline.  Thus, unlike some previous shells, commands run from a file of
     shell commands have no access to the text of the commands by default; in-
     stead they receive the original standard input of the shell.  The `<<'
     mechanism should be used to present inline data.  This permits shell com-
     mand scripts to function as components of pipelines and allows the shell
     to block read its input.  Note that the default standard input for a com-
     mand run detached is not modified to be the empty file /dev/null; instead
     the standard input remains as the original standard input of the shell.
     If this is a terminal and if the process attempts to read from the termi-
     nal, then the process will block and the user will be notified (see Jobs
     above).

     The standard error output may be directed through a pipe with the stan-
     dard output.  Simply use the form `|&' instead of just `|'.

   Expressions
     Several of the built-in commands (to be described later) take expres-
     sions, in which the operators are similar to those of C, with the same
     precedence, but with the opposite grouping: right to left.  These expres-
     sions appear in the @, exit, if, and while commands.  The following oper-
     ators are available:

           ||  &&  | ^  &  ==  !=  =~  !~  <=  >= <  > <<  >>  +  -  *  /  %
           !  ~  (  )

     Here the precedence increases to the right, `==' `!=' `=~' and `!~', `<='
     `>=' `<' and `>', `<<' and `>>', `+' and `-', `*' `/' and `%' being, in
     groups, at the same level.  The `==' `!=' `=~' and `!~' operators compare
     their arguments as strings; all others operate on numbers.  The operators
     `=~' and `!~' are like `!=' and `==' except that the right hand side is a
     pattern (containing, e.g., *'s, ?'s, and instances of ``[...]'') against
     which the left-hand operand is matched.  This reduces the need for use of
     the switch statement in shell scripts when all that is really needed is
     pattern matching.

     Strings that begin with `0' are considered octal numbers.  Null or miss-
     ing arguments are considered `0'. The result of all expressions are
     strings, which represent decimal numbers.  It is important to note that
     no two components of an expression can appear in the same word; except
     when adjacent to components of expressions that are syntactically signif-
     icant to the parser (`&', `|', `<', `>', `(', and `)'), they should be
     surrounded by spaces.

     Also available in expressions as primitive operands are command execu-
     tions enclosed in `{' and `}' and file enquiries of the form -l name
     where l is one of:

           r       read access
           w       write access
           x       execute access
           e       existence
           o       ownership
           z       zero size
           f       plain file
           d       directory

     The specified name is command and filename expanded and then tested to
     see if it has the specified relationship to the real user.  If the file
     does not exist or is inaccessible then all enquiries return false, i.e.,
     `0'. Command executions succeed, returning true, i.e., `1', if the com-
     mand exits with status 0, otherwise they fail, returning false, i.e.,
     `0'. If more detailed status information is required then the command
     should be executed outside an expression and the variable status exam-
     ined.

   Control flow
     The shell contains several commands that can be used to regulate the flow
     of control in command files (shell scripts) and (in limited but useful
     ways) from terminal input.  These commands all operate by forcing the
     shell to reread or skip in its input and, because of the implementation,
     restrict the placement of some of the commands.

     The foreach, switch, and while statements, as well as the if-then-else
     form of the if statement require that the major keywords appear in a sin-
     gle simple command on an input line as shown below.

     If the shell's input is not seekable, the shell buffers up input whenever
     a loop is being read and performs seeks in this internal buffer to accom-
     plish the rereading implied by the loop.  (To the extent that this al-
     lows, backward goto's will succeed on non-seekable inputs.)

   Built-in commands
     Built-in commands are executed within the shell.  If a built-in command
     occurs as any component of a pipeline except the last then it is executed
     in a sub-shell.

           alias
           alias name
           alias name wordlist
                   The first form prints all aliases.  The second form prints
                   the alias for name.  The final form assigns the specified
                   wordlist as the alias of name; wordlist is command and
                   filename substituted.  name is not allowed to be ``alias''
                   or ``unalias''.

           alloc   Shows the amount of dynamic memory acquired, broken down
                   into used and free memory.  With an argument shows the num-
                   ber of free and used blocks in each size category.  The
                   categories start at size 8 and double at each step.  This
                   command's output may vary across system types, since sys-
                   tems other than the VAX may use a different memory alloca-
                   tor.

           bg
           bg %job ...
                   Puts the current or specified jobs into the background,
                   continuing them if they were stopped.

           break   Causes execution to resume after the end of the nearest en-
                   closing foreach or while. The remaining commands on the
                   current line are executed.  Multi-level breaks are thus
                   possible by writing them all on one line.

           breaksw
                   Causes a break from a switch, resuming after the endsw.

           case label:
                   A label in a switch statement as discussed below.

           cd
           cd name
           chdir
           chdir name
                   Change the shell's working directory to directory name. If
                   no argument is given then change to the home directory of
                   the user.  If name is not found as a subdirectory of the
                   current directory (and does not begin with `/', `./' or
                   `../'), then each component of the variable cdpath is
                   checked to see if it has a subdirectory name. Finally, if
                   all else fails but name is a shell variable whose value be-
                   gins with `/', then this is tried to see if it is a direc-
                   tory.

           continue
                   Continue execution of the nearest enclosing while or
                   foreach. The rest of the commands on the current line are
                   executed.

           default:
                   Labels the default case in a switch statement.  The default
                   should come after all case labels.

           dirs    Prints the directory stack; the top of the stack is at the
                   left, the first directory in the stack being the current
                   directory.

           echo wordlist


           echo -n wordlist
                   The specified words are written to the shell's standard
                   output, separated by spaces, and terminated with a newline
                   unless the -n option is specified.

           else
           end
           endif
           endsw   See the description of the foreach, if, switch, and while
                   statements below.

           eval arg ...
                   (As in sh(1).)  The arguments are read as input to the
                   shell and the resulting command(s) executed in the context
                   of the current shell.  This is usually used to execute com-
                   mands generated as the result of command or variable sub-
                   stitution, since parsing occurs before these substitutions.
                   See tset(1) for an example of using eval.

           exec command
                   The specified command is executed in place of the current
                   shell.

           exit
           exit (expr)
                   The shell exits either with the value of the status vari-
                   able (first form) or with the value of the specified expr
                   (second form).

           fg
           fg %job ...
                   Brings the current or specified jobs into the foreground,
                   continuing them if they were stopped.

           foreach name (wordlist)
           ...
           end     The variable name is successively set to each member of
                   wordlist and the sequence of commands between this command
                   and the matching end are executed.  (Both foreach and end
                   must appear alone on separate lines.)  The built-in command
                   continue may be used to continue the loop prematurely and
                   the built-in command break to terminate it prematurely.
                   When this command is read from the terminal, the loop is
                   read once prompting with `?' before any statements in the
                   loop are executed.  If you make a mistake typing in a loop
                   at the terminal you can rub it out.

           glob wordlist
                   Like echo but no `\' escapes are recognized and words are
                   delimited by NUL characters in the output.  Useful for pro-
                   grams that wish to use the shell to filename expand a list
                   of words.

           goto word
                   The specified word is filename and command expanded to
                   yield a string of the form `label'. The shell rewinds its
                   input as much as possible and searches for a line of the
                   form ``label:'', possibly preceded by blanks or tabs.  Exe-
                   cution continues after the specified line.

           hashstat
                   Print a statistics line showing how effective the internal
                   hash table has been at locating commands (and avoiding
                   exec's). An exec is attempted for each component of the
                   path where the hash function indicates a possible hit, and
                   in each component that does not begin with a `/'.

           history
           history n
           history -r n
           history -h n
                   Displays the history event list; if n is given, only the n
                   most recent events are printed.  The -r option reverses the
                   order of printout to be most recent first instead of oldest
                   first.  The -h option causes the history list to be printed
                   without leading numbers.  This format produces files suit-
                   able for sourcing using the -h option to source.

           if (expr) command
                   If the specified expression evaluates true, then the single
                   command with arguments is executed.  Variable substitution
                   on command happens early, at the same time it does for the
                   rest of the if command.  command must be a simple command,
                   not a pipeline, a command list, or a parenthesized command
                   list.  Input/output redirection occurs even if expr is
                   false, i.e., when command is not executed (this is a bug).

           if (expr) then
           ...
           else if (expr2) then
           ...
           else
           ...
           endif   If the specified expr is true then the commands up to the
                   first else are executed; otherwise if expr2 is true then
                   the commands up to the second else are executed, etc.  Any
                   number of else-if pairs are possible; only one endif is
                   needed.  The else part is likewise optional.  (The words
                   else and endif must appear at the beginning of input lines;
                   the if must appear alone on its input line or after an
                   else.)

           jobs
           jobs -l
                   Lists the active jobs; the -l option lists process IDs in
                   addition to the normal information.

           kill %job
           kill    [-s signal_name] pid
           kill -sig pid ...
           kill -l [exit_status]
                   Sends either the SIGTERM (terminate) signal or the speci-
                   fied signal to the specified jobs or processes.  Signals
                   are either given by number or by names (as given in
                   <signal.h>, stripped of the prefix ``SIG''). The signal
                   names are listed by ``kill -l''; if an exit_status is spec-
                   ified, only the corresponding signal name will be written.
                   There is no default; just saying ``kill'' does not send a
                   signal to the current job.  If the signal being sent is
                   SIGTERM (terminate) or SIGHUP (hangup), then the job or
                   process will be sent a SIGCONT (continue) signal as well.

           limit
           limit resource
           limit resource maximum-use
           limit -h
           limit -h resource
           limit -h resource maximum-use
                   Limits the consumption by the current process and each pro-
                   cess it creates to not individually exceed maximum-use on
                   the specified resource. If no maximum-use is given, then
                   the current limit is printed; if no resource is given, then
                   all limitations are given.  If the -h flag is given, the
                   hard limits are used instead of the current limits.  The
                   hard limits impose a ceiling on the values of the current
                   limits.  Only the super-user may raise the hard limits, but
                   a user may lower or raise the current limits within the le-
                   gal range.

                   Resources controllable currently include cputime (the maxi-
                   mum number of cpu-seconds to be used by each process),
                   filesize (the largest single file that can be created),
                   datasize (the maximum growth of the data+stack region via
                   sbrk(2) beyond the end of the program text), stacksize (the
                   maximum size of the automatically extended stack region),
                   and coredumpsize (the size of the largest core dump that
                   will be created).

                   The maximum-use may be given as a (floating point or inte-
                   ger) number followed by a scale factor.  For all limits
                   other than cputime the default scale is `k' or
                   ``kilobytes'' (1024 bytes); a scale factor of `m' or
                   ``megabytes'' may also be used.  For cputime the default
                   scale is ``seconds''; a scale factor of `m' for minutes or
                   `h' for hours, or a time of the form ``mm:ss'' giving min-
                   utes and seconds also may be used.

                   For both resource names and scale factors, unambiguous pre-
                   fixes of the names suffice.

           login   Terminate a login shell, replacing it with an instance of
                   /usr/bin/login. This is one way to log off, included for
                   compatibility with sh(1).

           logout  Terminate a login shell.  Especially useful if ignoreeof is
                   set.

           nice
           nice +number
           nice command
           nice +number command
                   The first form sets the scheduling priority for this shell
                   to 4.  The second form sets the priority to the given
                   number. The final two forms run command at priority 4 and
                   number respectively.  The greater the number, the less CPU
                   the process will get.  The super-user may specify negative
                   priority by using ``nice -number ...''. command is always
                   executed in a sub-shell, and the restrictions placed on
                   commands in simple if statements apply.

           nohup
           nohup command
                   The first form can be used in shell scripts to cause
                   hangups to be ignored for the remainder of the script.  The
                   second form causes the specified command to be run with
                   hangups ignored.  All processes detached with `&' are ef-
                   fectively nohup'ed.

           notify
           notify %job ...
                   Causes the shell to notify the user asynchronously when the
                   status of the current or specified jobs change; normally
                   notification is presented before a prompt.  This is auto-
                   matic if the shell variable notify is set.

           onintr
           onintr -

           onintr label
                   Control the action of the shell on interrupts.  The first
                   form restores the default action of the shell on interrupts
                   which is to terminate shell scripts or to return to the
                   terminal command input level.  The second form onintr -
                   causes all interrupts to be ignored.  The final form causes
                   the shell to execute a goto label when an interrupt is re-
                   ceived or a child process terminates because it was inter-
                   rupted.

                   In any case, if the shell is running detached and inter-
                   rupts are being ignored, all forms of onintr have no mean-
                   ing and interrupts continue to be ignored by the shell and
                   all invoked commands.  Finally, onintr statements are ig-
                   nored in the system startup files where interrupts are dis-
                   abled (/etc/csh.cshrc, /etc/csh.login).

           popd
           popd +n
                   Pops the directory stack, returning to the new top directo-
                   ry.  With an argument ``+ n'' discards the n'th entry in
                   the stack.  The members of the directory stack are numbered
                   from the top starting at 0.

           printf format-string values
                   Invokes a built-in version of printf after evaluating the
                   format-string and values. See the printf(1) manpage for de-
                   tails.

           pushd
           pushd name
           pushd n
                   With no arguments, pushd exchanges the top two elements of
                   the directory stack.  Given a name argument, pushd changes
                   to the new directory (ala cd) and pushes the old current
                   working directory (as in cwd) onto the directory stack.
                   With a numeric argument, pushd rotates the n'th argument of
                   the directory stack around to be the top element and
                   changes to it.  The members of the directory stack are num-
                   bered from the top starting at 0.

           rehash  Causes the internal hash table of the contents of the di-
                   rectories in the path variable to be recomputed.  This is
                   needed if new commands are added to directories in the path
                   while you are logged in.  This should only be necessary if
                   you add commands to one of your own directories, or if a
                   systems programmer changes the contents of a system direc-
                   tory.

           repeat count command
                   The specified command which is subject to the same restric-
                   tions as the command in the one line if statement above, is
                   executed count times.  I/O redirections occur exactly once,
                   even if count is 0.

           set
           set name
           set name=word
           set name[index]=word
           set name=(wordlist)
                   The first form of the command shows the value of all shell
                   variables.  Variables that have other than a single word as
                   their value print as a parenthesized word list.  The second
                   form sets name to the null string.  The third form sets
                   name to the single word. The fourth form sets the index'th
                   component of name to word; this component must already ex-
                   ist.  The final form sets name to the list of words in
                   wordlist. The value is always command and filename expand-
                   ed.

                   These arguments may be repeated to set multiple values in a
                   single set command.  Note however, that variable expansion
                   happens for all arguments before any setting occurs.

           setenv
           setenv name
           setenv name value
                   The first form lists all current environment variables.  It
                   is equivalent to printenv(1).  The last form sets the value
                   of environment variable name to be value, a single string.
                   The second form sets name to an empty string.  The most
                   commonly used environment variables USER, TERM, and PATH
                   are automatically imported to and exported from the csh
                   variables user, term, and path; there is no need to use
                   setenv for these.

           shift
           shift variable
                   The members of argv are shifted to the left, discarding
                   argv[1]. It is an error for argv not to be set or to have
                   less than one word as value.  The second form performs the
                   same function on the specified variable.

           source name
           source -h name
                   The shell reads commands from name. source commands may be
                   nested; if they are nested too deeply the shell may run out
                   of file descriptors.  An error in a source at any level
                   terminates all nested source commands.  Normally input dur-
                   ing source commands is not placed on the history list; the
                   -h option causes the commands to be placed on the history
                   list without being executed.

           stop
           stop %job ...
                   Stops the current or specified jobs that are executing in
                   the background.

           suspend
                   Causes the shell to stop in its tracks, much as if it had
                   been sent a stop signal with ^Z. This is most often used to
                   stop shells started by su(1).

           switch (string)
           case str1:
               ...
               breaksw
               ...
           default:
               ...
               breaksw
           endsw   Each case label is successively matched against the speci-
                   fied string which is first command and filename expanded.
                   The file metacharacters `*', `?' and ``[...]'' may be used
                   in the case labels, which are variable expanded.  If none
                   of the labels match before the ``default'' label is found,
                   then the execution begins after the default label.  Each
                   case label and the default label must appear at the begin-
                   ning of a line.  The command breaksw causes execution to
                   continue after the endsw. Otherwise control may fall
                   through case labels and the default label as in C.  If no
                   label matches and there is no default, execution continues
                   after the endsw.

           time
           time command
                   With no argument, a summary of time used by this shell and
                   its children is printed.  If arguments are given the speci-
                   fied simple command is timed and a time summary as de-
                   scribed under the time variable is printed.  If necessary,
                   an extra shell is created to print the time statistic when
                   the command completes.

           umask
           umask value
                   The file creation mask is displayed (first form) or set to
                   the specified value (second form).  The mask is given in
                   octal.  Common values for the mask are 002 giving all ac-
                   cess to the group and read and execute access to others or
                   022 giving all access except write access for users in the
                   group or others.

           unalias pattern
                   All aliases whose names match the specified pattern are
                   discarded.  Thus all aliases are removed by unalias *. It
                   is not an error for nothing to be unaliased.

           unhash  Use of the internal hash table to speed location of execut-
                   ed programs is disabled.

           unlimit
           unlimit resource
           unlimit -h
           unlimit -h resource
                   Removes the limitation on resource. If no resource is spec-
                   ified, then all resource limitations are removed.  If -h is
                   given, the corresponding hard limits are removed.  Only the
                   super-user may do this.

           unset pattern
                   All variables whose names match the specified pattern are
                   removed.  Thus all variables are removed by unset *; this
                   has noticeably distasteful side-effects.  It is not an er-
                   ror for nothing to be unset.

           unsetenv pattern
                   Removes all variables whose name match the specified pat-
                   tern from the environment.  See also the setenv command
                   above and printenv(1).

           wait    Wait for all background jobs.  If the shell is interactive,
                   then an interrupt can disrupt the wait.  After the inter-
                   rupt, the shell prints names and job numbers of all jobs
                   known to be outstanding.

           which command
                   Displays the resolved command that will be executed by the
                   shell.

           while (expr)
           ...
           end     While the specified expression evaluates non-zero, the com-
                   mands between the while and the matching end are evaluated.
                   break and continue may be used to terminate or continue the
                   loop prematurely.  (The while and end must appear alone on
                   their input lines.)  Prompting occurs here the first time
                   through the loop as for the foreach statement if the input
                   is a terminal.

           %job    Brings the specified job into the foreground.

           %job &  Continues the specified job in the background.

           @
           @ name= expr
           @ name[index]= expr
                   The first form prints the values of all the shell vari-
                   ables.  The second form sets the specified name to the val-
                   ue of expr. If the expression contains `<', `>', `&' or `|'
                   then at least this part of the expression must be placed
                   within `(' `)'. The third form assigns the value of expr to
                   the index'th argument of name. Both name and its index'th
                   component must already exist.

     The operators `*=', `+=', etc. are available as in C.  The space separat-
     ing the name from the assignment operator is optional.  Spaces are, how-
     ever, mandatory in separating components of expr which would otherwise be
     single words.

     Special postfix `++' and `--' operators increment and decrement name re-
     spectively; i.e., ``@ i++''.

   Pre-defined and environment variables
     The following variables have special meaning to the shell.  Of these,
     argv, cwd, home, path, prompt, shell and status are always set by the
     shell.  Except for cwd and status, this setting occurs only at initial-
     ization; these variables will not then be modified unless done explicitly
     by the user.

     The shell copies the environment variable USER into the variable user,
     TERM into term, and HOME into home, and copies these back into the envi-
     ronment whenever the normal shell variables are reset.  The environment
     variable PATH is likewise handled; it is not necessary to worry about its
     setting other than in the file .cshrc as inferior csh processes will im-
     port the definition of path from the environment, and re-export it if you
     then change it.

     argv       Set to the arguments to the shell, it is from this variable
                that positional parameters are substituted; i.e., ``$1'' is
                replaced by ``$argv[1]'', etc.

     cdpath     Gives a list of alternate directories searched to find subdi-
                rectories in chdir commands.

     cwd        The full pathname of the current directory.

     echo       Set when the -x command-line option is given.  Causes each
                command and its arguments to be echoed just before it is exe-
                cuted.  For non-built-in commands all expansions occur before
                echoing.  Built-in commands are echoed before command and
                filename substitution, since these substitutions are then done
                selectively.

     filec      Enable file name completion.

     histchars  Can be given a string value to change the characters used in
                history substitution.  The first character of its value is
                used as the history substitution character, replacing the de-
                fault character `!'. The second character of its value re-
                places the character `^' in quick substitutions.

     histfile   Can be set to the pathname where history is going to be


                saved/restored.

     history    Can be given a numeric value to control the size of the histo-
                ry list.  Any command that has been referenced in this many
                events will not be discarded.  Too large values of history may
                run the shell out of memory.  The last executed command is al-
                ways saved on the history list.

     home       The home directory of the invoker, initialized from the envi-
                ronment.  The filename expansion of ``~'' refers to this vari-
                able.

     ignoreeof  If set the shell ignores end-of-file from input devices which
                are terminals.  This prevents shells from accidentally being
                killed by control-Ds.

     mail       The files where the shell checks for mail.  This checking is
                done after each command completion that will result in a
                prompt, if a specified interval has elapsed.  The shell says
                ``You have new mail.'' if the file exists with an access time
                not greater than its modify time.

                If the first word of the value of mail is numeric it specifies
                a different mail checking interval, in seconds, than the de-
                fault, which is 10 minutes.

                If multiple mail files are specified, then the shell says
                ``New mail in name'' when there is mail in the file name.

     noclobber  As described in the section on Input/output, restrictions are
                placed on output redirection to insure that files are not ac-
                cidentally destroyed, and that `>>' redirections refer to ex-
                isting files.

     noglob     If set, filename expansion is inhibited.  This inhibition is
                most useful in shell scripts that are not dealing with file-
                names, or after a list of filenames has been obtained and fur-
                ther expansions are not desirable.

     nonomatch  If set, it is not an error for a filename expansion to not
                match any existing files; instead the primitive pattern is re-
                turned.  It is still an error for the primitive pattern to be
                malformed; i.e., ``echo ['' still gives an error.

     notify     If set, the shell notifies asynchronously of job completions;
                the default is to present job completions just before printing
                a prompt.

     path       Each word of the path variable specifies a directory in which
                commands are to be sought for execution.  A null word speci-
                fies the current directory.  If there is no path variable then
                only full path names will execute.  The usual search path is
                ``.'', ``/bin'', ``/usr/bin'', ``/sbin'' and ``/usr/sbin'',
                but this may vary from system to system.  For the super-user
                the default search path is ``/bin'', ``/usr/bin'', ``/sbin'',
                and ``/usr/sbin''. A shell that is given neither the -c nor
                the -t option will normally hash the contents of the directo-
                ries in the path variable after reading .cshrc, and each time
                the path variable is reset.  If new commands are added to
                these directories while the shell is active, it may be neces-
                sary to do a rehash or the commands may not be found.

     prompt     The string that is printed before each command is read from an
                interactive terminal input.  If a `!' appears in the string it
                will be replaced by the current event number unless a preced-
                ing `\' is given.  Default is ``% '', or ``#for the super-

                user.''

     savehist   Is given a numeric value to control the number of entries of
                the history list that are saved in ~/.history when the user
                logs out.  Any command that has been referenced in this many
                events will be saved.  During start up the shell sources
                ~/.history into the history list enabling history to be saved
                across logins.  Too large values of savehist will slow down
                the shell during start up.  If savehist is just set, the shell
                will use the value of history.

     shell      The file in which the shell resides.  This variable is used in
                forking shells to interpret files that have execute bits set,
                but which are not executable by the system.  (See the descrip-
                tion of Non-built-in command execution below.)  Initialized to
                the (system-dependent) home of the shell.

     status     The status returned by the last command.  If it terminated ab-
                normally, then 0200 is added to the status.  Built-in commands
                that fail return exit status 1, all other built-in commands
                set status to 0.

     time       Controls automatic timing of commands.  If set, then any com-
                mand that takes more than this many CPU seconds will cause a
                line giving user, system, and real times and a utilization
                percentage which is the ratio of user plus system times to re-
                al time to be printed when it terminates.

     verbose    Set by the -v command-line option, causes the words of each
                command to be printed after history substitution.

   Non-built-in command execution
     When a command to be executed is found to not be a built-in command the
     shell attempts to execute the command via execve(2).  Each word in the
     variable path names a directory from which the shell will attempt to exe-
     cute the command.  If it is given neither a -c nor a -t option, the shell
     will hash the names in these directories into an internal table so that
     it will only try an exec in a directory if there is a possibility that
     the command resides there.  This shortcut greatly speeds command location
     when many directories are present in the search path.  If this mechanism
     has been turned off (via unhash), or if the shell was given a -c or -t
     argument, and in any case for each directory component of path that does
     not begin with a `/', the shell concatenates with the given command name
     to form a path name of a file which it then attempts to execute.

     Parenthesized commands are always executed in a sub-shell.  Thus

           (cd; pwd); pwd

     prints the home directory; leaving you where you were (printing this af-
     ter the home directory), while

           cd; pwd

     leaves you in the home directory.  Parenthesized commands are most often
     used to prevent chdir from affecting the current shell.

     If the file has execute permissions but is not an executable binary to
     the system, then it is assumed to be a file containing shell commands and
     a new shell is spawned to read it.

     If there is an alias for shell then the words of the alias will be
     prepended to the argument list to form the shell command.  The first word
     of the alias should be the full path name of the shell (e.g.,
     ``$shell''). Note that this is a special, late occurring, case of alias
     substitution, and only allows words to be prepended to the argument list
     without change.

   Signal handling
     The shell normally ignores SIGQUIT signals.  Jobs running detached (ei-
     ther by & or the bg or %... & commands) are immune to signals generated
     from the keyboard, including hangups.  Other signals have the values
     which the shell inherited from its parent.  The shell's handling of in-
     terrupts and terminate signals in shell scripts can be controlled by
     onintr. Login shells catch the SIGTERM (terminate) signal; otherwise this
     signal is passed on to children from the state in the shell's parent.
     Interrupts are not allowed when a login shell is reading the file
     .logout.

AUTHOR
     William Joy.  Job control and directory stack features first implemented
     by J.E. Kulp of IIASA, Laxenburg, Austria, with different syntax than
     that used now.  File name completion code written by Ken Greer, HP Labs.
     Eight-bit implementation Christos S. Zoulas, Cornell University.

FILES
     ~/.cshrc     read at beginning of execution by each shell
     ~/.login     read by login shell, after .cshrc at login
     ~/.logout    read by login shell, at logout
     /bin/sh      standard shell, for shell scripts not starting with a `#'
     /tmp/sh*     temporary file for `<<'
     /etc/passwd  source of home directories for ``~name''

LIMITATIONS
     Word lengths - Words can be no longer than 1024 characters.  The number
     of arguments to a command that involves filename expansion is limited to
     1/6th the number of characters allowed in an argument list.  Command sub-
     stitutions may substitute no more characters than are allowed in an argu-
     ment list.  To detect looping, the shell restricts the number of alias
     substitutions on a single line to 20.

SEE ALSO
     sh(1),  access(2),  execve(2),  fork(2),  pipe(2),  setrlimit(2),
     umask(2),  wait(2),  killpg(3),  sigvec(3),  tty(4),  a.out(5),  envi-
     ron(7)

     'An introduction to the C shell'

HISTORY
     csh appeared in 3BSD. It was a first implementation of a command language
     interpreter incorporating a history mechanism (see History
     substitutions), job control facilities (see Jobs), interactive file name
     and user name completion (see File name completion), and a C-like syntax.
     There are now many shells that also have these mechanisms, plus a few
     more (and maybe some bugs too), which are available through the usenet.

BUGS
     When a command is restarted from a stop, the shell prints the directory
     it started in if this is different from the current directory; this can
     be misleading (i.e., wrong) as the job may have changed directories in-
     ternally.

     Shell built-in functions are not stoppable/restartable.  Command se-
     quences of the form ``a ; b ; c'' are also not handled gracefully when
     stopping is attempted.  If you suspend `b', the shell will immediately
     execute `c'. This is especially noticeable if this expansion results from
     an alias.  It suffices to place the sequence of commands in ()'s to force
     it to a sub-shell; i.e., ``(a ; b ; c'').

     Control over tty output after processes are started is primitive; perhaps
     this will inspire someone to work on a good virtual terminal interface.
     In a virtual terminal interface much more interesting things could be
     done with output control.

     Alias substitution is most often used to clumsily simulate shell proce-
     dures; shell procedures should be provided instead of aliases.

     Commands within loops, prompted for by `?', are not placed on the history
     list.  Control structure should be parsed instead of being recognized as
     built-in commands.  This would allow control commands to be placed any-
     where, to be combined with `|', and to be used with `&' and `;' metasyn-
     tax.

     It should be possible to use the `:' modifiers on the output of command
     substitutions.

     The way the filec facility is implemented is ugly and expensive.

OpenBSD 2.6                    January 21, 1994                             23

Source: OpenBSD 2.6 man pages. Copyright: Portions are copyrighted by BERKELEY
SOFTWARE DESIGN, INC., The Regents of the University of California, Massachusetts
Institute of Technology, Free Software Foundation, FreeBSD Inc., and others.



(Corrections, notes, and links courtesy of RocketAware.com)


[Detailed Topics]
FreeBSD Sources for csh(1)
FreeBSD Sources for csh(1)
OpenBSD sources for csh(1)


[Overview Topics]

Up to: Command Shells and Scripting Languages


RocketLink!--> Man page versions: OpenBSD FreeBSD NetBSD Others






Rapid-Links: Search | About | Comments | Submit Path: RocketAware > csh.1/
RocketAware.com is a service of Mib Software
Copyright 1999, Forrest J. Cavalier III. All Rights Reserved.
We welcome submissions and comments